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About ResMed

• Buisiness
– Medical Devices (Respiratory)
– Global market
– Regulated (by FDA and other bodies)

• Revenue
– 2005 $A 550 million +

• Global software development team
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A ‘typical’ medical device project

Resources

Time
Applied Research

Technology Transfer
Skunk Works

The Idea The Team

Official Project

Requirements Submission

Last-minute
Changes

The Product
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Oil & Water

• 10 years ago things were simple(r)
– All we had was water

Standards based on processes (unashamedly waterfall-like).
Software engineers only knew waterfall-like lifecycles 
Regulators expected process artifacts (waterfall-like)
We didn’t know of anything better
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• Now 
– We have oil and water

Standards based on processes (waterfall, iterative, incremental)
Software engineers aware of alternative methodologies
Regulators expect process artifacts (waterfall-like)
We are aware that the ‘old way’ is not always the best way
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“Oil”
Lightweight Processes

Agile Manifesto: 
……….we have come to value

Individuals and Interactions over processes and tools 
Working Software over comprehensive documentation

…Responding to Change over following a plan

• When I say Agile I mean Agile…..any
methodology that shares these values.

Agile Manifesto: 
……….we have come to value

Individuals and Interactions over processes and tools 
Working Software over comprehensive documentation

…Responding to Change over following a plan

• When I say Agile I mean Agile…..any
methodology that shares these values.

Agile Manefesto http://agilemanifesto.org/
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“Water”
Formal (Heavy) Processes

CMM(I) – processes based on two assumptions
– A system is best managed by disaggregating it into 

defined work products that are converted from an 
input to an output state to achieve a specific design 
goal

– A mature Software Organization is one in which all 
activities are planned and then controlled to achieve 
specific design goals

CMM(I) – processes based on two assumptions
– A system is best managed by disaggregating it into 

defined work products that are converted from an 
input to an output state to achieve a specific design 
goal

– A mature Software Organization is one in which all 
activities are planned and then controlled to achieve 
specific design goals

Regulators and auditors generally value: 

Processes and Tools over individuals and interactions

Documentation over working software

Following a plan over responding to change



8 A Barnes 14 July 2006

Can Agile and Formal 
processes co-exist?

AGILE

• People based

• Adaptive

• Unpredictable or rapidly 
changing requirements. 

• Low criticality 

• Senior developers 
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FORMAL

• Process based

• Predictive

• Stable and known requirements

• High criticality

• Junior developers

FORMAL

• Process based

• Predictive

• Stable and known requirements

• High criticality

• Junior developers

Boehm, B.; R. Turner (2004). Balancing Agility and 
Discipline: A Guide for the Perplexed. Boston, MA: 
Addison-Wesley. ISBN 0321186125. 

Horses for Courses
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Do we want Light & Heavy 
processes to coexist?

• Instead of trying to make XP work rationally with the firm's existing 
processes, each side is pointing fingers at the other. 

No one seems to be trying to apply XP within the SW-CMM context 
rationally and profitably as the sages have suggested ... 

XP adherents feel they don't have time for the formality ... 

Process proponents argue ... quality will suffer and customer 
satisfaction will be sacrificed. 

Reifer, Don. "XP and the CMM." IEEE Software May/June 2003: 14-15. 
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Can we manage with
just one or the other?

• Agile and Formal processes have different strengths

• If different methodologies are better for different 
problems

– What happens if one project has characteristics that needs 
both Agile and Formal processes?

• If a project is best addressed with an Agile lifecycle 
– What do we show the regulators?

• If a project is best addressed with a planned incremental 
lifecycle

– How do we manage project uncertainty?
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An innovation project
One process or two?

Resources

Time
Applied Research

Technology Transfer
Skunk Works

Official Project Last-minute
Changes

UNCERTAINTY
(lots of)

CERTAINTY
(sort of)
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Mixing up methodologies

• Agile + Formal mixed = best of both worlds???

• Three approaches to mixing Agile processes into a 
formal process environment. 

– Redefine the formal environment
– Convert to formal process late in the project
– Merge Agile into the formal process

• Each approach either
– Devalues Agile Process
– Devalues Formal Process
– Or both!
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Mixing by redefinition
You want specs and documents?

• Writing code is part of the specification process, and the 
software itself is documentation. 

Frank Jacquette, Agile Methodologies in a Validated Setting

• Writing code is part of the specification process, and the 
software itself is documentation. 

Frank Jacquette, Agile Methodologies in a Validated Setting

http://www.jacquette.com/articles/agilevalidation.shtml
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Design
= Code

Code

Specification
= Code

Release

Test Results

VERDICT: NOT CONVINCED

Pure Semantics

Ad hoc product functionality

Does Frank design avionics software?
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Late conversion 
Just a mere formality

Establish Project
Requirements

Establish Software
Design

Code

Establish 
Software

Tests

Release

Test Results
Test

Plans

Code
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Requirements
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Tests

Project
Plans
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Late conversion 
Just a mere formality
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VERDICT: NOT CONVINCED

Testing in Quality at last minute

Just using formal lifecycle to create 
documents

A Waterfall for show rather than value
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Make Agile Heavyweight!
You want documents not code
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Make Agile Heavyweight!
You want documents not code
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Code
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VERDICT: NOT CONVINCED

Benefits of Agile are lost

Confidence in final product lost

More document rework than development

Anything but Lean!
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If methods don’t mix
Why not just use Agile?

• …. they never -- ever -- disclose the risks and the downsides. …….
The truth is that these practices come at a price, and for a lot of 
organizations, the price gets high very quickly. Agile development will 
never go far if its proponents keep ignoring these organizations and 
make condescending comments to its members.

• Risks of using Agile processes are unknown
– The risk reduction using formal processes is known
– Fear of the unknown isn’t a valid reason to avoid Agile 

completely

• …. they never -- ever -- disclose the risks and the downsides. …….
The truth is that these practices come at a price, and for a lot of 
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never go far if its proponents keep ignoring these organizations and 
make condescending comments to its members.

• Risks of using Agile processes are unknown
– The risk reduction using formal processes is known
– Fear of the unknown isn’t a valid reason to avoid Agile 

completely

Posting: Joseph Ottinger on June 09, 2006
www.theserverside.com 
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What is the risk 
in just using Agile?

Potential product risks mitigated by formal methodologies

• Functional Risk
– Code does not actually do what is claimed

• Integrity Risk
– Code may directly cause hazards, or may interfere with the 

correct operation of other parts of the software

• Compliance Risk
– Code may not comply with legal requirements for its 

development

• Quality Risk
– Code may not have the required quality attributes
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Agile quality
Some expected attributes

Agile Quality attributes

• Changeability
– Can the software be easily changed without compromising 

functionality?

• Testability
– Can the design be easily tested?

• Acceptability
– Does the prototype address the needs of differing user groups?

• Understandability
– Does it adequately address human factors and usability?

Software Engineering — Product Quality — Part 1: Quality Model. ISO, Geneva, Switzerland, 2001. ISO/IEC 9126-1:2001(E)
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Agile quality?
More challenging attributes

• Completeness - Does it do everything it claims to do?

• Accuracy -Does it actually do what it claims to do?

• Interoperability - Does it work with other system interfaces?

• Dependability - Is the implementation robust and fault tolerant?

• Maturity - Does it demonstrate a reduction in latent defects over time?

• Capability - Does it function correctly at limits of throughput and capacity?

• Consistency - Are all artifacts consistent with each other?

• Install-ability - Can it be efficiently be installed/manufactured without loss of 
quality?
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Co-existing Processes

I propose that:

• Two contrasting processes can successfully co-exist 
provided that

– The strengths of each process are respected
– The project needs change significantly during the lifecycle, 

and
– The interface between processes is managed

I propose that:
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Separate project phases
Separate processes

High Project Risk Adaptive Phase
• Focus is on reducing project risk

•Architecture, Algorithm, Features, Interfaces, Capability

• Deliverables are not just code – but also drafts of defining documents

•Ends when project risk has been lowered to an acceptable level

Low Project Risk Predictive Phase
• Focus is on reducing product risk

• Few Unknowns

•Planned iterations 

•Deliverables are approved artifacts for ‘customer’

•Ends when product risk has been lowered to an acceptable level
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Managing the gap
between two phases

Project
Requirements

Release

Propose
Feature

Build
Feature

Test
Feature

Design
Feature

Develop
Model Draft

Design
Models

Draft
Requirements

Draft
Tests

Draft
Code

Project
Plans

Imported
Design

Imported
Tests

Imported
Code

High Project Risk Adaptive Phase Low Project Risk Predictive Phase

Plan 
Change

Change
Code

Test
Results

Design
Change

Define
Iteration

Plan
Tests
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Bridging the gap

• Artifacts transferred between 
adaptive and predictive phases as 
a Prototype:

• Ensure
– Predictable Functionality
– Predictable Integrity
– Predictable Quality

• Avoid importing product risk with 
Prototype

• Artifacts transferred between 
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Bridging the gap

Functional Risk:

• Do we know what the prototype software is 
supposed to do?

• Are the project requirements similar to 
prototype  requirements? 

• Is the environment used for the prototype 
similar to the project target?

NO? 
– Stay in first phase

or if so bad just 

Functional Risk:

• Do we know what the prototype software is 
supposed to do?

• Are the project requirements similar to 
prototype  requirements? 
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Are requirements
and environment 

similar?

Perform
Requirements

Gap
Analysis
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Bridging the gap

Integrity Risk:

• Can the prototype itself cause hazards
physical harm, corporate harm, financial harm

• Could the prototype cause other parts of our 
system to cause hazards…

• Will we be relying on the prototype to 
mitigate hazards?

YES?  
– Find those parts of the prototype 

and throw the code away!

Integrity Risk:

• Can the prototype itself cause hazards
physical harm, corporate harm, financial harm

• Could the prototype cause other parts of our 
system to cause hazards…

• Will we be relying on the prototype to 
mitigate hazards?

YES?  
– Find those parts of the prototype 

and throw the code away!

Could 
Prototype

Cause Hazard?

Identify 
Hazards

Evaluate
Control Measures
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Bridging the gap

Quality Risk:

• Does the prototype lack quality attributes 
that could result in product risk…

YES?  
– Develop a plan to improve deficient 

attributes
– Develop a plan to verify that the remedial 

actions have been successful.

Quality Risk:

• Does the prototype lack quality attributes 
that could result in product risk…

YES?  
– Develop a plan to improve deficient 

attributes
– Develop a plan to verify that the remedial 

actions have been successful.

Is prototype
lacking

attributes?

Review prototype
against

Desired quality 
attributes



30 A Barnes 14 July 2006

Bridging the gap

Example Quality Attributes Review CriteriaExample Quality Attributes Review Criteria

Can the prototype be installed/manufactured without loss of quality?Install-ability

Are all the draft artifacts consistent with each other?Consistency

Will prototype function correctly at the limits of throughput and capacity?Capability

Does the prototype demonstrate a reduction in latent defects over time?Maturity

Is the prototype adequately robust and fault tolerant?Dependability

Is the prototype compatible with other system interfaces?Interoperability

Does the prototype correctly address each assumed requirement?Accuracy

Does the prototype fully address its assumed requirements?Completeness

QuestionAttribute
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One project – 2 methodologies

Resources

Time
Applied Research

Technology Transfer
Skunk Works

Official Project Last-minute
Changes

AGILE
PROCESSES

FORMAL
PROCESSES
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Summary

• Lightweight processes and formal regulatory environments do 
not mix!

– A brave man would try to convince the FDA that Agile is OK

• Agile and Formal processes do not mix!
– But they can co-exist

• A strategy
– Use Agile processes to reduce Project risk 
– Transfer a prototype with draft documents
– Review prototype for Product Risk

Functional, Integrity, Quality (and Compliance)
– Introduce accepted drafts into formal iterative/evolutionary 

lifecycle as appropriate
– Use formal processes to reduce Product Risk
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Questions

My email

abarnes@resmed.com.au

My email

abarnes@resmed.com.au


