
1 XXXXXXX © ResMed YR MONTH Global leaders in sleep and respiratory medicine

Integrating lightweight software
processes into a regulated environment
Adrian Barnes

Principal Engineer, ResMed Ltd

2 A Barnes 14 July 2006

Agenda

• Software development at ResMed

• Oil & Water
– Agile Lightweight Process
– Formal Process
– Will they Mix?

• Mixing processes
– Problems in trying to mix methodologies

• Bridging the gap
– A strategy for co-existing methodologies

• Software development at ResMed

• Oil & Water
– Agile Lightweight Process
– Formal Process
– Will they Mix?

• Mixing processes
– Problems in trying to mix methodologies

• Bridging the gap
– A strategy for co-existing methodologies

3 A Barnes 14 July 2006

About ResMed

• Buisiness
– Medical Devices (Respiratory)
– Global market
– Regulated (by FDA and other bodies)

• Revenue
– 2005 $A 550 million +

• Global software development team

• Buisiness
– Medical Devices (Respiratory)
– Global market
– Regulated (by FDA and other bodies)

• Revenue
– 2005 $A 550 million +

• Global software development team

4 A Barnes 14 July 2006

A ‘typical’ medical device project

Resources

Time
Applied Research

Technology Transfer
Skunk Works

The Idea The Team

Official Project

Requirements Submission

Last-minute
Changes

The Product

5 A Barnes 14 July 2006

Oil & Water

• 10 years ago things were simple(r)
– All we had was water

Standards based on processes (unashamedly waterfall-like).
Software engineers only knew waterfall-like lifecycles
Regulators expected process artifacts (waterfall-like)
We didn’t know of anything better

• 10 years ago things were simple(r)
– All we had was water

Standards based on processes (unashamedly waterfall-like).
Software engineers only knew waterfall-like lifecycles
Regulators expected process artifacts (waterfall-like)
We didn’t know of anything better

• Now
– We have oil and water

Standards based on processes (waterfall, iterative, incremental)
Software engineers aware of alternative methodologies
Regulators expect process artifacts (waterfall-like)
We are aware that the ‘old way’ is not always the best way

• Now
– We have oil and water

Standards based on processes (waterfall, iterative, incremental)
Software engineers aware of alternative methodologies
Regulators expect process artifacts (waterfall-like)
We are aware that the ‘old way’ is not always the best way

6 A Barnes 14 July 2006

“Oil”
Lightweight Processes

Agile Manifesto:
……….we have come to value

Individuals and Interactions over processes and tools
Working Software over comprehensive documentation

…Responding to Change over following a plan

• When I say Agile I mean Agile…..any
methodology that shares these values.

Agile Manifesto:
……….we have come to value

Individuals and Interactions over processes and tools
Working Software over comprehensive documentation

…Responding to Change over following a plan

• When I say Agile I mean Agile…..any
methodology that shares these values.

Agile Manefesto http://agilemanifesto.org/

7 A Barnes 14 July 2006

“Water”
Formal (Heavy) Processes

CMM(I) – processes based on two assumptions
– A system is best managed by disaggregating it into

defined work products that are converted from an
input to an output state to achieve a specific design
goal

– A mature Software Organization is one in which all
activities are planned and then controlled to achieve
specific design goals

CMM(I) – processes based on two assumptions
– A system is best managed by disaggregating it into

defined work products that are converted from an
input to an output state to achieve a specific design
goal

– A mature Software Organization is one in which all
activities are planned and then controlled to achieve
specific design goals

Regulators and auditors generally value:

Processes and Tools over individuals and interactions

Documentation over working software

Following a plan over responding to change

8 A Barnes 14 July 2006

Can Agile and Formal
processes co-exist?

AGILE

• People based

• Adaptive

• Unpredictable or rapidly
changing requirements.

• Low criticality

• Senior developers

AGILE

• People based

• Adaptive

• Unpredictable or rapidly
changing requirements.

• Low criticality

• Senior developers

FORMAL

• Process based

• Predictive

• Stable and known requirements

• High criticality

• Junior developers

FORMAL

• Process based

• Predictive

• Stable and known requirements

• High criticality

• Junior developers

Boehm, B.; R. Turner (2004). Balancing Agility and
Discipline: A Guide for the Perplexed. Boston, MA:
Addison-Wesley. ISBN 0321186125.

Horses for Courses

9 A Barnes 14 July 2006

Do we want Light & Heavy
processes to coexist?

• Instead of trying to make XP work rationally with the firm's existing
processes, each side is pointing fingers at the other.

No one seems to be trying to apply XP within the SW-CMM context
rationally and profitably as the sages have suggested ...

XP adherents feel they don't have time for the formality ...

Process proponents argue ... quality will suffer and customer
satisfaction will be sacrificed.

Reifer, Don. "XP and the CMM." IEEE Software May/June 2003: 14-15.

• Instead of trying to make XP work rationally with the firm's existing
processes, each side is pointing fingers at the other.

No one seems to be trying to apply XP within the SW-CMM context
rationally and profitably as the sages have suggested ...

XP adherents feel they don't have time for the formality ...

Process proponents argue ... quality will suffer and customer
satisfaction will be sacrificed.

Reifer, Don. "XP and the CMM." IEEE Software May/June 2003: 14-15.

10 A Barnes 14 July 2006

Can we manage with
just one or the other?

• Agile and Formal processes have different strengths

• If different methodologies are better for different
problems

– What happens if one project has characteristics that needs
both Agile and Formal processes?

• If a project is best addressed with an Agile lifecycle
– What do we show the regulators?

• If a project is best addressed with a planned incremental
lifecycle

– How do we manage project uncertainty?

• Agile and Formal processes have different strengths

• If different methodologies are better for different
problems

– What happens if one project has characteristics that needs
both Agile and Formal processes?

• If a project is best addressed with an Agile lifecycle
– What do we show the regulators?

• If a project is best addressed with a planned incremental
lifecycle

– How do we manage project uncertainty?

11 A Barnes 14 July 2006

An innovation project
One process or two?

Resources

Time
Applied Research

Technology Transfer
Skunk Works

Official Project Last-minute
Changes

UNCERTAINTY
(lots of)

CERTAINTY
(sort of)

12 A Barnes 14 July 2006

Mixing up methodologies

• Agile + Formal mixed = best of both worlds???

• Three approaches to mixing Agile processes into a
formal process environment.

– Redefine the formal environment
– Convert to formal process late in the project
– Merge Agile into the formal process

• Each approach either
– Devalues Agile Process
– Devalues Formal Process
– Or both!

• Agile + Formal mixed = best of both worlds???

• Three approaches to mixing Agile processes into a
formal process environment.

– Redefine the formal environment
– Convert to formal process late in the project
– Merge Agile into the formal process

• Each approach either
– Devalues Agile Process
– Devalues Formal Process
– Or both!

13 A Barnes 14 July 2006

Mixing by redefinition
You want specs and documents?

• Writing code is part of the specification process, and the
software itself is documentation.

Frank Jacquette, Agile Methodologies in a Validated Setting

• Writing code is part of the specification process, and the
software itself is documentation.

Frank Jacquette, Agile Methodologies in a Validated Setting

http://www.jacquette.com/articles/agilevalidation.shtml

Agile
Iteration

Code

TestsTests

Agile
IterationAgile

IterationAgile
IterationAgile

IterationAgile
IterationAgile

Iteration

Design
= Code

Code

Specification
= Code

Release

Test Results

14 A Barnes 14 July 2006

Mixing by redefinition
You want specs and documents?

• Writing code is part of the specification process, and the
software itself is documentation.

Frank Jacquette, Agile Methodologies in a Validated Setting

• Writing code is part of the specification process, and the
software itself is documentation.

Frank Jacquette, Agile Methodologies in a Validated Setting

Agile
Iteration

Code

TestsTests

Agile
IterationAgile

IterationAgile
IterationAgile

IterationAgile
IterationAgile

Iteration

http://www.jacquette.com/articles/agilevalidation.shtml

Design
= Code

Code

Specification
= Code

Release

Test Results

VERDICT: NOT CONVINCED

Pure Semantics

Ad hoc product functionality

Does Frank design avionics software?

15 A Barnes 14 July 2006

Late conversion
Just a mere formality

Establish Project
Requirements

Establish Software
Design

Code

Establish
Software

Tests

Release

Test Results
Test

Plans

Code

Assumed
Requirements

Automated
Tests

Project
Plans

Agile
Iteration

Requirements

Tests

Agile
IterationAgile

IterationAgile
IterationAgile

IterationAgile
IterationAgile

Iteration

16 A Barnes 14 July 2006

Late conversion
Just a mere formality

Establish Project
Requirements

Establish Software
Design

Code

Establish
Software

Tests

Release

Test Results
Test

Plans

Code

Assumed
Requirements

Automated
Tests

Agile
Iteration

Requirements

Tests

Agile
IterationAgile

IterationAgile
IterationAgile

IterationAgile
IterationAgile

Iteration

VERDICT: NOT CONVINCED

Testing in Quality at last minute

Just using formal lifecycle to create
documents

A Waterfall for show rather than value

17 A Barnes 14 July 2006

Make Agile Heavyweight!
You want documents not code

Development Iteration

Establish
New

Requirements

Establish New
Design

Regression
Verification

Plan

Establish
New
Tests

New
Code

New
Verification

Results

Development Iteration

Establish
New

Requirements

Establish New
Design

Regression
Verification

Plan

Establish
New
Tests

New
Code

New
Verification

Results

Development Iteration

Establish
New

Requirements

Establish New
Design

Regression
Verification

Plan

Establish
New
Tests

New
Code

New
Verification

Results

Established Design
Established Tests

Established Requirements

Code

Project
Requirements

Software
Regression

Test

Release

18 A Barnes 14 July 2006

Make Agile Heavyweight!
You want documents not code

Development Iteration

Establish
New

Requirements

Establish New
Design

Regression
Verification

Plan

Establish
New
Tests

New
Code

New
Verification

Results

Development Iteration

Establish
New

Requirements

Establish New
Design

Regression
Verification

Plan

Establish
New
Tests

New
Code

New
Verification

Results

Development Iteration

Establish
New

Requirements

Establish New
Design

Regression
Verification

Plan

Establish
New
Tests

New
Code

New
Verification

Results

Established Design
Established Tests

Established Requirements

Code

Project
Requirements

Software
Regression

Test

Release

VERDICT: NOT CONVINCED

Benefits of Agile are lost

Confidence in final product lost

More document rework than development

Anything but Lean!

19 A Barnes 14 July 2006

If methods don’t mix
Why not just use Agile?

• …. they never -- ever -- disclose the risks and the downsides. …….
The truth is that these practices come at a price, and for a lot of
organizations, the price gets high very quickly. Agile development will
never go far if its proponents keep ignoring these organizations and
make condescending comments to its members.

• Risks of using Agile processes are unknown
– The risk reduction using formal processes is known
– Fear of the unknown isn’t a valid reason to avoid Agile

completely

• …. they never -- ever -- disclose the risks and the downsides. …….
The truth is that these practices come at a price, and for a lot of
organizations, the price gets high very quickly. Agile development will
never go far if its proponents keep ignoring these organizations and
make condescending comments to its members.

• Risks of using Agile processes are unknown
– The risk reduction using formal processes is known
– Fear of the unknown isn’t a valid reason to avoid Agile

completely

Posting: Joseph Ottinger on June 09, 2006
www.theserverside.com

20 A Barnes 14 July 2006

What is the risk
in just using Agile?

Potential product risks mitigated by formal methodologies

• Functional Risk
– Code does not actually do what is claimed

• Integrity Risk
– Code may directly cause hazards, or may interfere with the

correct operation of other parts of the software

• Compliance Risk
– Code may not comply with legal requirements for its

development

• Quality Risk
– Code may not have the required quality attributes

Potential product risks mitigated by formal methodologies

• Functional Risk
– Code does not actually do what is claimed

• Integrity Risk
– Code may directly cause hazards, or may interfere with the

correct operation of other parts of the software

• Compliance Risk
– Code may not comply with legal requirements for its

development

• Quality Risk
– Code may not have the required quality attributes

21 A Barnes 14 July 2006

Agile quality
Some expected attributes

Agile Quality attributes

• Changeability
– Can the software be easily changed without compromising

functionality?

• Testability
– Can the design be easily tested?

• Acceptability
– Does the prototype address the needs of differing user groups?

• Understandability
– Does it adequately address human factors and usability?

Software Engineering — Product Quality — Part 1: Quality Model. ISO, Geneva, Switzerland, 2001. ISO/IEC 9126-1:2001(E)

Agile Quality attributes

• Changeability
– Can the software be easily changed without compromising

functionality?

• Testability
– Can the design be easily tested?

• Acceptability
– Does the prototype address the needs of differing user groups?

• Understandability
– Does it adequately address human factors and usability?

Software Engineering — Product Quality — Part 1: Quality Model. ISO, Geneva, Switzerland, 2001. ISO/IEC 9126-1:2001(E)

22 A Barnes 14 July 2006

Agile quality?
More challenging attributes

• Completeness - Does it do everything it claims to do?

• Accuracy -Does it actually do what it claims to do?

• Interoperability - Does it work with other system interfaces?

• Dependability - Is the implementation robust and fault tolerant?

• Maturity - Does it demonstrate a reduction in latent defects over time?

• Capability - Does it function correctly at limits of throughput and capacity?

• Consistency - Are all artifacts consistent with each other?

• Install-ability - Can it be efficiently be installed/manufactured without loss of
quality?

• Completeness - Does it do everything it claims to do?

• Accuracy -Does it actually do what it claims to do?

• Interoperability - Does it work with other system interfaces?

• Dependability - Is the implementation robust and fault tolerant?

• Maturity - Does it demonstrate a reduction in latent defects over time?

• Capability - Does it function correctly at limits of throughput and capacity?

• Consistency - Are all artifacts consistent with each other?

• Install-ability - Can it be efficiently be installed/manufactured without loss of
quality?

23 A Barnes 14 July 2006

Co-existing Processes

I propose that:

• Two contrasting processes can successfully co-exist
provided that

– The strengths of each process are respected
– The project needs change significantly during the lifecycle,

and
– The interface between processes is managed

I propose that:

• Two contrasting processes can successfully co-exist
provided that

– The strengths of each process are respected
– The project needs change significantly during the lifecycle,

and
– The interface between processes is managed

24 A Barnes 14 July 2006

Separate project phases
Separate processes

High Project Risk Adaptive Phase
• Focus is on reducing project risk

•Architecture, Algorithm, Features, Interfaces, Capability

• Deliverables are not just code – but also drafts of defining documents

•Ends when project risk has been lowered to an acceptable level

Low Project Risk Predictive Phase
• Focus is on reducing product risk

• Few Unknowns

•Planned iterations

•Deliverables are approved artifacts for ‘customer’

•Ends when product risk has been lowered to an acceptable level

25 A Barnes 14 July 2006

Managing the gap
between two phases

Project
Requirements

Release

Propose
Feature

Build
Feature

Test
Feature

Design
Feature

Develop
Model Draft

Design
Models

Draft
Requirements

Draft
Tests

Draft
Code

Project
Plans

Imported
Design

Imported
Tests

Imported
Code

High Project Risk Adaptive Phase Low Project Risk Predictive Phase

Plan
Change

Change
Code

Test
Results

Design
Change

Define
Iteration

Plan
Tests

26 A Barnes 14 July 2006

Bridging the gap

• Artifacts transferred between
adaptive and predictive phases as
a Prototype:

• Ensure
– Predictable Functionality
– Predictable Integrity
– Predictable Quality

• Avoid importing product risk with
Prototype

• Artifacts transferred between
adaptive and predictive phases as
a Prototype:

• Ensure
– Predictable Functionality
– Predictable Integrity
– Predictable Quality

• Avoid importing product risk with
Prototype

Draft
Design
Models

Draft
Requirements

Draft
Tests

Draft
Code

Project
Plans

Imported
Design

Imported
Tests

Imported
Code

27 A Barnes 14 July 2006

Bridging the gap

Functional Risk:

• Do we know what the prototype software is
supposed to do?

• Are the project requirements similar to
prototype requirements?

• Is the environment used for the prototype
similar to the project target?

NO?
– Stay in first phase

or if so bad just

Functional Risk:

• Do we know what the prototype software is
supposed to do?

• Are the project requirements similar to
prototype requirements?

• Is the environment used for the prototype
similar to the project target?

NO?
– Stay in first phase

or if so bad just

Are requirements
and environment

similar?

Perform
Requirements

Gap
Analysis

28 A Barnes 14 July 2006

Bridging the gap

Integrity Risk:

• Can the prototype itself cause hazards
physical harm, corporate harm, financial harm

• Could the prototype cause other parts of our
system to cause hazards…

• Will we be relying on the prototype to
mitigate hazards?

YES?
– Find those parts of the prototype

and throw the code away!

Integrity Risk:

• Can the prototype itself cause hazards
physical harm, corporate harm, financial harm

• Could the prototype cause other parts of our
system to cause hazards…

• Will we be relying on the prototype to
mitigate hazards?

YES?
– Find those parts of the prototype

and throw the code away!

Could
Prototype

Cause Hazard?

Identify
Hazards

Evaluate
Control Measures

29 A Barnes 14 July 2006

Bridging the gap

Quality Risk:

• Does the prototype lack quality attributes
that could result in product risk…

YES?
– Develop a plan to improve deficient

attributes
– Develop a plan to verify that the remedial

actions have been successful.

Quality Risk:

• Does the prototype lack quality attributes
that could result in product risk…

YES?
– Develop a plan to improve deficient

attributes
– Develop a plan to verify that the remedial

actions have been successful.

Is prototype
lacking

attributes?

Review prototype
against

Desired quality
attributes

30 A Barnes 14 July 2006

Bridging the gap

Example Quality Attributes Review CriteriaExample Quality Attributes Review Criteria

Can the prototype be installed/manufactured without loss of quality?Install-ability

Are all the draft artifacts consistent with each other?Consistency

Will prototype function correctly at the limits of throughput and capacity?Capability

Does the prototype demonstrate a reduction in latent defects over time?Maturity

Is the prototype adequately robust and fault tolerant?Dependability

Is the prototype compatible with other system interfaces?Interoperability

Does the prototype correctly address each assumed requirement?Accuracy

Does the prototype fully address its assumed requirements?Completeness

QuestionAttribute

31 A Barnes 14 July 2006

One project – 2 methodologies

Resources

Time
Applied Research

Technology Transfer
Skunk Works

Official Project Last-minute
Changes

AGILE
PROCESSES

FORMAL
PROCESSES

32 A Barnes 14 July 2006

Summary

• Lightweight processes and formal regulatory environments do
not mix!

– A brave man would try to convince the FDA that Agile is OK

• Agile and Formal processes do not mix!
– But they can co-exist

• A strategy
– Use Agile processes to reduce Project risk
– Transfer a prototype with draft documents
– Review prototype for Product Risk

Functional, Integrity, Quality (and Compliance)
– Introduce accepted drafts into formal iterative/evolutionary

lifecycle as appropriate
– Use formal processes to reduce Product Risk

• Lightweight processes and formal regulatory environments do
not mix!

– A brave man would try to convince the FDA that Agile is OK

• Agile and Formal processes do not mix!
– But they can co-exist

• A strategy
– Use Agile processes to reduce Project risk
– Transfer a prototype with draft documents
– Review prototype for Product Risk

Functional, Integrity, Quality (and Compliance)
– Introduce accepted drafts into formal iterative/evolutionary

lifecycle as appropriate
– Use formal processes to reduce Product Risk

33 A Barnes 14 July 2006

Questions

My email

abarnes@resmed.com.au

My email

abarnes@resmed.com.au

